24 C
Singapore
Saturday, May 3, 2025
spot_img

Carnegie inks deal with Hewlett Packard Enterprise for CETO wave controls

Must read

Carnegie Clean Energy has signed a collaboration agreement with Hewlett Packard Enterprise (HPE) to work together on a project to develop a reinforcement learning based controller for the CETO wave energy technology.

The work will extend the artificial intelligence development already underway at Carnegie as part of Microsoft AI for Earth initiative for which the company recently received a grant end of October 2020.

Hewlett Packard Labs will contribute their
reinforcement learning (RL) expertise and computational resources to the
project, working alongside Carnegie’s team, which is already developing an
intelligent controller for the CETO technology.

The RL based controller development in this
project will occur in parallel with, and provide an opportunity to enhance, the
Carnegie team’s ongoing work on a machine learning (ML) based intelligent
controller.

Reinforcement learning is an area of
artificial intelligence in which a machine learning model is built with the
ability to self-learn.

While the intelligent controller currently
under development has to optimise the device’s response for every wave (using
ML models within the optimisation), the RL controller has the ability to
directly learn and apply the optimum response to predicted waves, during
operation, according to Carnegie.

The RL controller, which comes pre-loaded
with a simple control scheme, explores away from this reference using the
concept of reward to identify and learn good control actions.

What this means for wave energy is that a
RL based controller can move beyond optimising CETO’s response using an ML
model of the system trained on simulated data.

An RL based controller can actively adjust,
experiment, learn and optimise by utilising what actually happens during
operations. Initially, Carnegie envisions that a RL based controller would
likely use a power-output-based reward to learn optimum operation, the company
said.

Over time, the controller could become more
advanced and could ultimately use a reward based on Levelised Cost of Energy
(LCOE), thereby incorporating a range of variables into its operation
(including not only energy production but also elements of operations and
maintenance costs such as fatigue, avoiding large damaging waves, and even
commercial considerations.)

“The teams at Carnegie and HPE look forward to working together to pursue this exciting innovation which has the potential to improve the performance and reduce the cost of the CETO technology and revolutionise control of wave energy converters”, Carnegie said.

spot_img
- Advertisement -spot_img

More articles

spot_img
spot_img
- Advertisement -spot_img

Latest article